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Abstract. We consider the nearest neighbour qcantum mechanicd Heisenberg 
model acting on two simple one-dimensional chains of spin atoms. By showing 
that these models can be mapped onto a chain of spin 1 composites, we deduce that 
the spectrum has ii gap, provided that the spin 1 chain has a gap. This result is in 
contrast to that found for lhe chain of spin 4 a t o m  and suggests that a distinction 
between integer and half-integer spins is restrided to the linear &in. W e  pment a 
simple interpretation for the spin correlations of the low energy excitations and give 
new mrmerical evidence for a gap in the spectrum cf the spin 1 chain. The lowest 
l y k  spin !j chain excitation is a domain wall, but the lowest lying spin 1 chain 
excitation has previously been suggested to have spin-wave properties, we test this 
hypothesis numerically 

1. Gappe spin 4 Heisenberg models 

Exact results on the quantum mechanical Heisenberg model are both rare and very 
important. One such result is that half-integer spin chains are gapless whereas integer 
spin chains have gaps [l]. This important result might lead one to believe that the 
two classes of spins behave quite generally in different ways. This short note is simply 
pointing out that more exotic connectivities of atoms can alter this result, and in 
particular we find a one-dimensional half-integer system with a gap. 

The model we discuss has had ashort history in the literature [ Z ] .  A detailed math- 
ematical treatment can be found in this previous work and we will restrict ourselves 
to a brief interpretation of the physical content of the model. 

The first topology of interest is depicted in figure 1, and may be found in the body 
centre cubic lattice. The simplest geometric interpretation is of two interpenetrating 
lines of squares, with the edges of one set of squares passing through the centres of 
the other squares. Each atom has four nearest neighbours which compose its closest 
square. The two lines of squares make up two natural sublattices, and since all the 
nearest neighbours of one line of squares are on the other, the lattice is bipartite. 

The nearest neighbour Heisenberg model is: 
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Figure 1. The bipartite topology, ( a )  The two interpenetrating lines of aquarep. 
(a )  The nearest neighbour bonds w h k h  form connected octohedra. 

where [ii'] denote nearest neighbours, J is the interaction strength and Si are quantum 
mechanical spin $ operators. For the present geometry we may rewrite the Hamilto- 
nian as: 

where E denotes an edge which passes through the centre of a square, SE = Si,+ 
denotes the total spin of the pair of spins, Si> and , which sit on the edge above and 
below a square and (EE'] denote pairs of edges with nearest neighbour spins. 

It is clear from (2), that for each relevant edge, the square of the total edge spin, 
S E .  S E ,  commutes with the Hamiltonian and is therefore conserved. If we elect to 
use the representation where these operators are diagonal, viz S E  * S E  = SE(SE + I), 
then the problem is reduced to finding the configuration of values for SE which yields 
the ground state. 

The only two possible values for the total edge spin are, SE = 0 and 1. If an 
edge spin is singlet, then the two neighbouring edge bonds yield zero and the chain 
is effectively cut, witb the two neighbouring edge spins being completely decoupled. 
Since there is a large energy gain from bonding neighbouring triplet spins, singlet edge 
spin states are highly excited states and are therefore irrelevant to the low energy 
physics. The low energy spectrum is dominated by states where all the edge spins are 
triplet, and this is just the linear chain of spin 1 objects. 

The low energy excitation spectrum of the spin 1 chain is gapped, and so the 
present system also has a gap, in contrast to the spiu $ chain. 

The second geometry of interest to us is the chain of edge sharing tetrahedra, 
depicted in figure 2 and found in the face centre cubic lattice. The fundamental unit is 
the tetrahedron, which is well known to be topologically frustrated. This connectivity 
is very similar to the previous case, with the simple addition of a bond connecting the 
two atoms on a shared edge, leading to five nearest neighbours to each spin. We may 
rewrite the Hamiltonian as: 
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Figure 2. The frustrated topology. (a) Connected cubes of faee centre cubic atoms. 
(6) The ne-t neighbour bonds which form edge sharing tetrahedra. 

where NE is the number of shared edges. Once again we can choose to use the repre- 
sentation where the squares of total edge spins are conserved, and then the problem 
reduces to minimizing: 

over the possible edge spin values of SE = 0 or 1 for each spin, and then minimizing 
the energy of the residual segments of spin 1 chain. The only difference from the 
previous case, is that singlet bonds are now more favourable, gaining a full J from 
their internal bond. This in turn lowers the energy of the excitations with singlet edge 
spins, but a numerical study should convince the reader that there is still a gap to the 
state with the first singlet edge bond. The low energy excitations are therefore still 
those of the infinite spin 1 chain, and this system therefore has a gap to excitations. 

In table 1 we present the results of exact diagonalization studies of finite chain 
segments using the Lanczos algorithm. Finite size scaling applied to the gap to the 
first excitation is ambiguous, but we have the exact result of Aaldane [I] providing 
a gap. When we consider the gap to the first excitation with a singlet edge spin, 
viz SE = 0, we predict a gap of - 2.55 and - 1.55 for the bipartite and frustrated 
topologies respectively. The periodic calculation for this gap involves comparing the 
periodic ground state energy with the free ground state energy for the chain which 
is one spin shorter. The free calculation for this gap involves comparing the ground 
state of a chain with the sum of the energies of the two ground states of the two halves 
of the chain. 

In conclusion, we have presented two simple one-dimensional connectivities, one 
bipartite, the other topologically frustrated, both of which yield a gap in the low 
energy excitation spectrum of the spin $ Heisenberg model. 

The distinction between integer and half-integer spins presented by Aaldane [I] 
may simply be peculiar to the one-dimensional chain. 



1744 M W Long 

Table 1. Numerical calculations for finite lengths of spin 1 ch$m in units of J .  The 
chains are too short to deduce the true gap, but the gap to the firat singlet bond 
excitation is c l e d y  large in comparison with the low energy triplet excitalion gap. 
AU gaps M meas& with nspect to the pur$ state enem. Note that there M 

two lor energy states for Im boundary conditions. 

First singlet excitation 
Noaf Noof Groun&slate First 
atom bonds energy excitation Bipartite Ftustratcd 

Periodic boundary conditions 
2 2 -4.0000 2 . m  4 . m  3 . m  
3 3 -3.0000 1 .m 1 . m  0.w00 
4 4 -6.0000 1 .om0 3.woo 2.oooo 
5 5 -5.5667 0.2501 0.9210 -0.0790 
6 6 -8.6174 0.7206 2.7871 1.7671 
7 7 -9.5722 0.8568 2.2019 1.2019 
8 8 -11.3369 0.5935 2.7023 1.7023 
9 9 -12.4800 0.7702 2.3554 1.3554 

10 10 -14.0941 0.5248 2.6612 1.6612 
11 I 1  -15.336Y 0.7045 2.4421 1.4421 
12 12 -16.8696 0.4842 2.6392 1.6392 
13 13 -18.1697 0.6541 2.4957 1.4957 
14 14 -19.6551 0.4589 2.6269 1.6269 

Free boundary conditions 
2 1 -2.0000 1 .oooo 2.0000 1.0000 
3 2 -3.0000 l.0OOD 3.0000 2 . m  
4 3 -4.6457 0.5091 2.6457 1.6457 
5 4 -5.8303 0.5467 1.6303 0.8303 

7 '  6 -8.6346 0.3310 2y6346 1.6346 
8 7 -10.1246 0.2018 2.4889 1.4889 
9 8 - 11.4329 0.2127 2.1415 1.1415 

10 9 - 12.8946 0.1384 2.4186 1.4186 
11 10 -14.2304 0.1418 2.5698 1.5698 
12 11 -15.6740 0.0971 2.4734 1.4734 
13 12 -17.0267 0.0967 2.2876 1.2876 

6 5 -7.3703 0.3078 2.3703 1.3703 

2. Correlations in the spin 1 chain 

It  is generally believed that the chain of spin 1 a t o m  has a gap to excitations [3]. 
As well as the basic theoretical argument [I], there are now a few numerical results 
which are being used to support the assertion that the gap exists and has a value of - 0.45 [4]. These numerical calculations are based on periodic boundary conditions, 
and our results ennumerated in table 1 for the case of free boundary condibions lead 
us to reexamine the numerical calculations and seek a deeper understanding. 

A lot of effort has been expended on trying to  find both the gap to excitations and 
the correlation length of spin-spin correlations [4]. We will not pursue this problem. 
Our motivation is to try to understand the sense in which the spin 1 chain is unomu- 
Ions. Firstly we will examine the correlations found in the excitations, with a view 
to classical and quantum interpretations using the infinite spin and spin chains as 
analogues. Secondly we will point out two fundamental differences which we cannot 
as yet interpret. 
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2.1. Spin-spin correlations and classification of stales 

The two lowest energy states for free boundary conditions do not seem to exhibit the 
Haldane gap. A continuous variation of one of the bonds in the chain from zero to J 
demonstrates that the ground state and first excited state do not exchange with any 
other states in the system as the boundary conditions are changed, and therefore have 
identical quantum numbers. The state with periodic boundary conditions which has 
an excitation worth - 0.45 corresponds to a degenerate ground state for free boundary 
conditions. How can we interpret these states? 

Table 2. The spin-spin eodation functims, (Si .  Sit), for -ora states in the 
spin f and spin 1 chains. The values should be interpreted loosely m the averaEe 
value of lSlz cos0 between the relevant spins with a vanishing value indicating that 
the spins are uncorrelated. (a) Periodic boundary conditions. ( b )  Fke boundary 
conditions. 

(a) 

spin 1 Spin 1 

Ground First FirstzB Ground First Firstzc First 'LE 
state spin spiral state spin spiral spiral 

it waye state waw state state 

1 2 -0.4490 -0.4193 -0.3982 -1.4056 -1.3654 -1.2492 -1.2258 
1 3 0.1879 0.1743 0.0898 0.7775 0.8071 0.5414 0.5902 
1 4 -0.1658 -0.1143 -0.0049 -0.6322 -0.6670 -0.2022 -0.3323 
1 5 0.1209 0.0902 -0.1035 0.5044 0.5801 -0,1164 0.0123 
1 6 -0.1224 -0.0576 0.1269 -0.4621 -0.5361 0.2069 0.0634 
1 7 0.1070 0.0701 -0.1703 0.4363 0.5293 -0.3612 -0.2162 
1 8 -0.1224 -0.0576 0.1269 -0.4621 -0.5361 0.2069 0.0634 
1 9 0.1209 0.0902 -0.1035 0.5044 0.5801 -0.1164 0.0123 
1 10 -0.1658 -0.1143 -0.0049 -0.6322 -0.6670 -0.2022 -0.3323 
1 11 0.1879 0.1743 0.0898 0.7775 0.8G71 0.5414 0.5902 
1 12 -0.4490 -0.4193 -0.3982 -1,4056 -1.3654 -1.2492 -1.2258 

( b )  

Spin $ Spin 1 

Ground First Ground First 
i i' state excitation state excitation 

1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 
1 11 
1 12 

-0.6563 
0.1982 

-0.2206 
0.1095 

-0.1293 
0.0726 

-0.0899 
0.0512 

-0.0677 
0.0340 

-0.0517 

-0.5598 
0.2189 

-0.1304 
0.1163 

-0.0333 
0.0573 
0.0103 
0.0155 
0.0304 

-0.0082 
0.0329 

-1.6371 
0.8952 

-0.8121 
0.6266 

-0.6146 
0.5277 

-0.5730 
0.5128 

-0.6369 
0.5231 

-0.8125 

-1.5950 
0.8685 

-0.7023 
0.5094 

-0.3830 
0.2808 

-0.1698 
0.1089 

-0.oo09 
-0.0193 

0,1331 

A atudy of the spin-spin correlations ennumerated in table 2 leads to an expla- 
nation for the change. The first excited state with free boundary conditions gains a 
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twisf, with the spin at the opposite end of the chain being on average antrpaml/el to 
its relative direction in the ground state with free boundary conditions. 

This capacity for the spins to achieve a twist is very important in the study of 
the spin chain. For the classical limit such spiral states form very low energy gapless 
excitations which are quite distinct from classical spin waves. 

Classical spin waves involve three spin dimensions and are small displacements 
of the spins away from their classical directions. The displacements precess in the 
two dimensions which are perpendicular to the classical ground state quantization 
direction. The quantum analogue of these states can be found by studying the spin 
correlations of the excitations. A spin-wave excitation has the same basic pattern of 
spin correlations as the ground state, but with a minor modification in the magnitude 
of the correlations. The spin correlations of the lowest lying excitations for periodic 
boundary conditions ennumerated in table 2 are of this type. Such an excitation has 
spin 1 and is well modelled by a Holstein-Primakoff description. 

The classical spiral states involve only two spin dimensions and are also found in 
the XY model. All the spins lie in one plane and precess by a constant angle as one 
proceeds along the chain. A simple interpretation of such an excitation is that of a 
domain wa/L Two ground states at each end of the chain with different quantization 
directions can be smoothly connected by such a spiral. The quantum analogue of 
these states can also be found by a study of the spin correlations. Although the 
local correlations retain the same pattern as the ground state, at longer distances the 
relative phase of the correlations becomes reversed. 

For spin 4 systems domain walls seem to take an even more central role [5]. The 
low lying excitations are not spin waves bu t  are in fact domain walls carrying spin 4. 
Spin waves may then be interpreted as bound states of pairs of domain walls, which 
can break up at low temperatures in collisions. 

The fact that free boundary conditions facilitate the inclusion of a twist, suggests 
that the low lying excitations may well be domain walls and not spin waves even for 
the spin 1 chain. It is then quite natural to suggest the possibility that although the 
spin waves might have a gap, maybe the domain walls do not. It is clear from table 2 
that the lowest lying excitation for the periodic systems considered are spin-wave like. 

The natural way totest the above hypothesis numerically, is to attempt to perform 
finite size scaling on domain wall excitations, but can we find such excitations? 

It seems clear that domain walls are topological excitations and can only be created 
in pairs. The reason that the even membered chains have a spin wave as a lowest 
excitation, may then be interpreted as one spin wave being cheaper than two domain 
walls for these small systems. One of the consequences of this topological property is 
that odd membered rings must have one such excitation and so perhaps a comparison 
ofodd and even membered rings might yield theenergyofa domain wall. Furthermore, 
a recent study of some exactly soluble geometries, with only short range order in 
their ground states, demonstrates that domain wall excitation energies can be found 
from a comparison of odd and even membered chains for some systems [SI. Any 
such comparison for the spin 1 chain suggests that odd and even membered rings 
are directly comparable and there is no additional energy for odd membered rings as 
we shall show in the next subsection. Unfortunately, one cannot then deduce that a 
domain w d l  costs nothing, because for a system with only short range correlations, 
the odd membered chain may also yield the unique ground state in the limit. The 
odd membered rings do have total-spin 1 ground states, further suggesting that there 
is an extra ‘object’ present, corresponding possibly to a spin 1 domain wall. 
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If one accepts that a study of odd membered chains is ambiguous, then one is 
forced to look for spiral states in the even membered chains. Fortunately it is quite 
easy to interpret the low energy excitations in these systems. The ground state is a 
total spin singlet with zone centre phase coherence. There is an energy band at low 
energy corresponding to a single spin wave. The spin-wave states have total spin 1 
and exist all across the zone except at the zone centre. At  the zone centre, the lowest 
lying excitation is a spin 2 state which may be interpreted as two spin waves. The 
first spiral state is the lowest lying spin 0 excitation across the zone. The spin-spin 
correlations for these states are also ennumerated in table 2 and it is clear that there 
is one full twist along the chain. 

A finite size scaling study of small chains is ambiguous because of the small size 
of the systems involved. It is our belief that a comparison between spin s stems 
and spin 1 systems is the most convincing analysis, because the spin cham can be 
solved and understood analytically. 

Apart from an interchange of the zone centre and zone boundary for half of the 
spin 4 chains, the type of states and their correlations are surprisingly similar for 
the two types of chains. In our investigations, only the finite size scaling character- 
istics have exhibited any significant differences, the classification of the states being 
analogous. 

In figures 3 ( a )  and 3(6) we plot the energies of both the first excited state and 
the lowest lying zone boundary spiral state for each type of spin. The interpretation 
of the spin ?. s stem is easy given the analytic solution. The spiral state involves two 
phase boundaries and hence two topological excitations. Dividing this energy in two 
indicates that one topological excitation costs less energy than one spin wave, in perfect 
agreement with the analytic results. The two types of state finite size scale towards 
zero energy as they should do. The analogous states for the spin 1 system behave in 
a quite different way. Not only is it very difficult to argue that the excitation energies 
scale towards zero, the spiral state is much more than twice the single-spin-wave 
energy, suggesting that spin waves would be the dominant thermodynamic excitations 
at low temperatures, opposite to the behaviour predicted for the spin 4 system. Also 
of some concern is the negative curvature of the spiral state energies, whlch weakens 
the argument for the gap for these states in comparison to the spin-wave states. 

In figure 3(c) we plot the energies of the lowest spin 2 excitation and the zone 
centre spiral state. The lowest spin 2 excitation seems to finite size scale towards a 
finite value, exhibiting positive curvature like the lowest energy spin 1 excitation. It is 
quite natural to interpret this state as having two of the spin 1 excitations. The zone 
centre spiral produces the first real surprise; it does not appear t o  scale towards the 
same gap as the other ezciiations. There is however evidence of the positive curvature 
found for the other excitations indicating a gap. Naive estimates would suggest that 
in the absence of new effects it would become the lowest excitation at about N - 50. 
This state has all the properties one might expect of two low energy domain walls in 
the infinite chain limit. 

We have found much evidence which supports the Haldane gap. However, the 
lowest lying excitation being finite size scaled in the cluster calculations may not be 
the lowest lying excitation. In fact the lowest lying excitation could well be a domain 
boundary as it is for the spin $ chain. 

We believe that the low energy excitations of the spin $ and spin 1 chain have quite 
different local spin correlations, and should be interpreted as quite different types of 
excitations. 

2. y 

2 5 :  
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0 . 0  0.1 0.1, (1.1 0.21 

1!N 
Ffgure 3. The Excitation energies of small loop of atom. The symbols denote: 
X ,  the lowest energy spin-waw excitation; 0, the lowest energy spiral excitation; 
+, half the spird excitation energx *. the lowest enerCy spin 2 stale. ( 6 )  Spin $. 
( 6 )  Spin 1: the states d o g o u s  to those in (e). (e)  Spin 1: some other IOW energy 
states. 

2.2. Anomalous behaviour for the spin I ckain 

Although we are calling the lowest energy excitation of the spin 1 chain a spin wave, 
a careful comparison of the correlations in table 2 shows that this excited state has 
mom NCel order for more distant spins than the ground state, in complete contrast 
to both the spin $ case and the spin-wave interpretation. One can interpret this fact 
with the suggestion that the quantum analogue of the NBel state is an ezciled state 
and excitations of the ground state can locally excite extra N&I order. This is an 
analogous interpretation to that applied to the exactly soluble models with only short 
range correlations in the ground state [SI, where the analogy is clear cut. 

The spin correlation functions for our small clusters are not representative of the 
infinite chains. A comparison between excitations is more likely to survive into the 
infinite system however. The physical phenomena which stabilize the ground state do 
not change, and unless there is a reoersal of behaviour with an excitation becoming 
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the ground state the relative characteristics can be believed. 
If we calculate the expectation value of the square of the sublattice magnetization, 

then we find a sequence of excitations of the spin 1 chain, with increasing total spin, for 
which the sublattice magnetization increases. This is in direct contrast to the spin 4 
chain for which the corresponding states show a decrease in sublattice magnetization 
as the spin-wave interpretation suggests. The first spin wave and the lowest energy 
spin 2 excitation depicted in figure 3 ( c )  by x and *, respectively, are the first two 
states with increasing sublattice magnetization. The relevant states are the lowest 
energy states for the given total spin, and may be interpreted as having an increasing 
number of spin 1 excitations, one more for each increment in the total spin. In 
figure 4 we finite size scale the change in the square of the sublattice magnetization 
for there ‘spin-wave’ states. The spin waves on the spin $ chain clearly involve a loss 
in magnetization whereas the ‘spin waves’ for the spin 1 chain clearly involve a gain. 
It might initially be assumed that once the chain reaches the coherence length of the 
spin correlations that any gain in the sublattice magnetization might be lost, but the 
change is clearly increasing, suggesting that each excitation is associated with a local 
increase in magnetic order. 

Q 

Figure 4. A finite size xaling calculation of the change in sublattice magnetization 
of the excitations of Lhe spin f and spin 1 chains denoted by X and 0, respectiuely. 
The change is calculated from the spin =em ground state of the relevant chains, 
and the three states scaled sre the total spin 1, 2 and 3 ground states which have 
inmilsing sublattice magnetizations. The spin $ system ha4 a loss in sublattice 
msgnetizstion for these states whereas the spin 1 system has a gain in sublattice 
magnetization. 

There is a physical interpretation of the spin f systems for which the sublattice 
magnetization increases in the excitations. In quantum spin systems there is a compe- 
tition between two energies; classical ordering energy and quantum fluctuation energy 
or zero point motion. When geometric considerations destabilize the ordered state, 
the ground state optimizes quantum fluctuation energy at the expense of classical or- 
dering energy. Excitations then reinstate the ordering energy overcompensated by a 
loss in the dominant quantum fluctuation energy. This is a possible interpretation for 
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a 

Figure 5. The ground state energies of odd and even membered loops of spin 1 
atom. The approximate infinite loop limit has been extraded and the residual 
contribution, AE = E i 1.4016N, is plotted There is clearly no contribution from 
the domain wall which must be present for the odd membered chains. 

the behaviour of the spin 1 chain. 
There is a second anomaly which remains a surprising and unexplained feature. 

When we consider free boundary conditions, we seem to find two ground states and 
then a gap to higher excitations. The two states which exponentially approach each 
other in the infinite chain limit have total spin 0 and total spin 1. We have no inter- 
pretation of this ground state degeneracy, but we have observed a corresponding result 
for the chain with periodic boundary conditions. At first sight even and odd chains 
might be expected to have quite different energies since an odd chain necessitates a 
domain wall. In figure 5 we depict a careful comparison of the ground state energies 
of even and odd chains with periodic boundary conditions. The approximate infinite 
loop limit has been extracted, and the difference between the two loops should corre- 
spond to the energy of a single domain wall. To our surprise the domain wall found 
this way is predicted to be a t  zero energy. If w e  recall the correlations found in the 
two ground states for free boundary conditions, then the two spins at opposite ends 
of the chain are found to be parallel for one and antiparallel for the other on average. 
It seems natural to associate these two free boundary condition ground states with 
the periodic boundary condition ground states of the odd and even membered chain 
respectively. An interpretation of this ‘anomaly’ might shed some light on the subject. 

It would be nice if we could associate each chain end with a spin $, and then the 
resulting combination of the two would explain t.he degeneracy. This explanation is of 
course nonsense, since i t  is not possible to make a half-integer spin from only integer 

In conclusion, the numerical evidence for the Haldane gap is strong, with only the 
zone centre spiral causing concern. It is still conceivable that long wave length spirals 
are gapless. 

spins. 

Note added in pmof. The reader is directed to reference [?I, which may wcllpmve inttrtsting. Some 
of the ideas have a strong overlap with the present artids. 
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